Serveur d'exploration sur la détoxication des champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

An RND transporter in the monoterpene metabolism of Castellaniella defragrans.

Identifieur interne : 000635 ( Main/Exploration ); précédent : 000634; suivant : 000636

An RND transporter in the monoterpene metabolism of Castellaniella defragrans.

Auteurs : Edinson Puentes-Cala [Allemagne] ; Jens Harder [Allemagne]

Source :

RBID : pubmed:30334144

Descripteurs français

English descriptors

Abstract

The betaproteobacterium Castellaniella defragrans 65Phen grows on monoterpenes at concentrations toxic to many bacteria. Tolerance mechanisms include modifications of the membrane fatty acid composition and the mineralization of monoterpenes. In this study, we characterized an efflux transporter associated to the monoterpene metabolism. The inner-membrane transporter AmeD (apolar monoterpene efflux) affiliated to the HAE3 (hydrophobe/amphiphile efflux) family within the Resistance-Nodulation-Division (RND) superfamily. RND pumps of the HAE3 family are known for transporting substrates into the periplasm. AmeD is co-expressed with the outer membrane protein AmeA and the periplasmic proteins AmeB and AmeC, suggesting an export channel into the environment similar to HAE1-type RND exporters. Proteins AmeABCD are encoded within a genetic island involved in the metabolism of acyclic and cyclic monoterpenes. The deletion of ameABCD translated into a decrease in tolerance to monoterpenes in liquid cultures. The addition of acetate as cosubstrate in limonene-containing cultures partially alleviated monoterpene toxicity in the deletion mutant. Accumulation of Nile Red in cells of C. defragrans required dissipation of the proton motive force with carbonyl cyanide m-chlorophenylhydrazone (CCCP). Cells lacking AmeABCD accumulated more Nile Red, suggesting an export function of the proteins. Our observations suggest that the tetrapartite RND transporter AmeABCD acts as an exporter during monoterpene detoxification in C. defragrans.

DOI: 10.1007/s10532-018-9857-6
PubMed: 30334144
PubMed Central: PMC6394551


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">An RND transporter in the monoterpene metabolism of Castellaniella defragrans.</title>
<author>
<name sortKey="Puentes Cala, Edinson" sort="Puentes Cala, Edinson" uniqKey="Puentes Cala E" first="Edinson" last="Puentes-Cala">Edinson Puentes-Cala</name>
<affiliation wicri:level="3">
<nlm:affiliation>Dept. of Microbiology, Max Planck-Institute for Marine Microbiology, Celsiusstr. 1, 28359, Bremen, Germany. epuentes@mpi-bremen.de.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Dept. of Microbiology, Max Planck-Institute for Marine Microbiology, Celsiusstr. 1, 28359, Bremen</wicri:regionArea>
<placeName>
<region type="land" nuts="3">Brême (Land)</region>
<settlement type="city">Brême</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Harder, Jens" sort="Harder, Jens" uniqKey="Harder J" first="Jens" last="Harder">Jens Harder</name>
<affiliation wicri:level="3">
<nlm:affiliation>Dept. of Microbiology, Max Planck-Institute for Marine Microbiology, Celsiusstr. 1, 28359, Bremen, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Dept. of Microbiology, Max Planck-Institute for Marine Microbiology, Celsiusstr. 1, 28359, Bremen</wicri:regionArea>
<placeName>
<region type="land" nuts="3">Brême (Land)</region>
<settlement type="city">Brême</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:30334144</idno>
<idno type="pmid">30334144</idno>
<idno type="doi">10.1007/s10532-018-9857-6</idno>
<idno type="pmc">PMC6394551</idno>
<idno type="wicri:Area/Main/Corpus">000682</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000682</idno>
<idno type="wicri:Area/Main/Curation">000682</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000682</idno>
<idno type="wicri:Area/Main/Exploration">000682</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">An RND transporter in the monoterpene metabolism of Castellaniella defragrans.</title>
<author>
<name sortKey="Puentes Cala, Edinson" sort="Puentes Cala, Edinson" uniqKey="Puentes Cala E" first="Edinson" last="Puentes-Cala">Edinson Puentes-Cala</name>
<affiliation wicri:level="3">
<nlm:affiliation>Dept. of Microbiology, Max Planck-Institute for Marine Microbiology, Celsiusstr. 1, 28359, Bremen, Germany. epuentes@mpi-bremen.de.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Dept. of Microbiology, Max Planck-Institute for Marine Microbiology, Celsiusstr. 1, 28359, Bremen</wicri:regionArea>
<placeName>
<region type="land" nuts="3">Brême (Land)</region>
<settlement type="city">Brême</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Harder, Jens" sort="Harder, Jens" uniqKey="Harder J" first="Jens" last="Harder">Jens Harder</name>
<affiliation wicri:level="3">
<nlm:affiliation>Dept. of Microbiology, Max Planck-Institute for Marine Microbiology, Celsiusstr. 1, 28359, Bremen, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Dept. of Microbiology, Max Planck-Institute for Marine Microbiology, Celsiusstr. 1, 28359, Bremen</wicri:regionArea>
<placeName>
<region type="land" nuts="3">Brême (Land)</region>
<settlement type="city">Brême</settlement>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Biodegradation</title>
<idno type="eISSN">1572-9729</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Bacterial Proteins (genetics)</term>
<term>Bacterial Proteins (metabolism)</term>
<term>Biodegradation, Environmental (MeSH)</term>
<term>Computer Simulation (MeSH)</term>
<term>Likelihood Functions (MeSH)</term>
<term>Membrane Transport Proteins (metabolism)</term>
<term>Monoterpenes (metabolism)</term>
<term>Monoterpenes (pharmacology)</term>
<term>Multigene Family (MeSH)</term>
<term>Phylogeny (MeSH)</term>
<term>Proteobacteria (genetics)</term>
<term>Proteobacteria (growth & development)</term>
<term>Proteobacteria (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Dépollution biologique de l'environnement (MeSH)</term>
<term>Famille multigénique (MeSH)</term>
<term>Fonctions de vraisemblance (MeSH)</term>
<term>Monoterpènes (métabolisme)</term>
<term>Monoterpènes (pharmacologie)</term>
<term>Phylogenèse (MeSH)</term>
<term>Proteobacteria (croissance et développement)</term>
<term>Proteobacteria (génétique)</term>
<term>Proteobacteria (métabolisme)</term>
<term>Protéines bactériennes (génétique)</term>
<term>Protéines bactériennes (métabolisme)</term>
<term>Protéines de transport membranaire (métabolisme)</term>
<term>Simulation numérique (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Bacterial Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Bacterial Proteins</term>
<term>Membrane Transport Proteins</term>
<term>Monoterpenes</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Monoterpenes</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Proteobacteria</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Proteobacteria</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Proteobacteria</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Proteobacteria</term>
<term>Protéines bactériennes</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Proteobacteria</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Monoterpènes</term>
<term>Proteobacteria</term>
<term>Protéines bactériennes</term>
<term>Protéines de transport membranaire</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Monoterpènes</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biodegradation, Environmental</term>
<term>Computer Simulation</term>
<term>Likelihood Functions</term>
<term>Multigene Family</term>
<term>Phylogeny</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Dépollution biologique de l'environnement</term>
<term>Famille multigénique</term>
<term>Fonctions de vraisemblance</term>
<term>Phylogenèse</term>
<term>Simulation numérique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The betaproteobacterium Castellaniella defragrans 65Phen grows on monoterpenes at concentrations toxic to many bacteria. Tolerance mechanisms include modifications of the membrane fatty acid composition and the mineralization of monoterpenes. In this study, we characterized an efflux transporter associated to the monoterpene metabolism. The inner-membrane transporter AmeD (apolar monoterpene efflux) affiliated to the HAE3 (hydrophobe/amphiphile efflux) family within the Resistance-Nodulation-Division (RND) superfamily. RND pumps of the HAE3 family are known for transporting substrates into the periplasm. AmeD is co-expressed with the outer membrane protein AmeA and the periplasmic proteins AmeB and AmeC, suggesting an export channel into the environment similar to HAE1-type RND exporters. Proteins AmeABCD are encoded within a genetic island involved in the metabolism of acyclic and cyclic monoterpenes. The deletion of ameABCD translated into a decrease in tolerance to monoterpenes in liquid cultures. The addition of acetate as cosubstrate in limonene-containing cultures partially alleviated monoterpene toxicity in the deletion mutant. Accumulation of Nile Red in cells of C. defragrans required dissipation of the proton motive force with carbonyl cyanide m-chlorophenylhydrazone (CCCP). Cells lacking AmeABCD accumulated more Nile Red, suggesting an export function of the proteins. Our observations suggest that the tetrapartite RND transporter AmeABCD acts as an exporter during monoterpene detoxification in C. defragrans.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Curated" Owner="NLM">
<PMID Version="1">30334144</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>04</Month>
<Day>15</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>02</Month>
<Day>25</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1572-9729</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>30</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2019</Year>
<Month>02</Month>
</PubDate>
</JournalIssue>
<Title>Biodegradation</Title>
<ISOAbbreviation>Biodegradation</ISOAbbreviation>
</Journal>
<ArticleTitle>An RND transporter in the monoterpene metabolism of Castellaniella defragrans.</ArticleTitle>
<Pagination>
<MedlinePgn>1-12</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s10532-018-9857-6</ELocationID>
<Abstract>
<AbstractText>The betaproteobacterium Castellaniella defragrans 65Phen grows on monoterpenes at concentrations toxic to many bacteria. Tolerance mechanisms include modifications of the membrane fatty acid composition and the mineralization of monoterpenes. In this study, we characterized an efflux transporter associated to the monoterpene metabolism. The inner-membrane transporter AmeD (apolar monoterpene efflux) affiliated to the HAE3 (hydrophobe/amphiphile efflux) family within the Resistance-Nodulation-Division (RND) superfamily. RND pumps of the HAE3 family are known for transporting substrates into the periplasm. AmeD is co-expressed with the outer membrane protein AmeA and the periplasmic proteins AmeB and AmeC, suggesting an export channel into the environment similar to HAE1-type RND exporters. Proteins AmeABCD are encoded within a genetic island involved in the metabolism of acyclic and cyclic monoterpenes. The deletion of ameABCD translated into a decrease in tolerance to monoterpenes in liquid cultures. The addition of acetate as cosubstrate in limonene-containing cultures partially alleviated monoterpene toxicity in the deletion mutant. Accumulation of Nile Red in cells of C. defragrans required dissipation of the proton motive force with carbonyl cyanide m-chlorophenylhydrazone (CCCP). Cells lacking AmeABCD accumulated more Nile Red, suggesting an export function of the proteins. Our observations suggest that the tetrapartite RND transporter AmeABCD acts as an exporter during monoterpene detoxification in C. defragrans.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Puentes-Cala</LastName>
<ForeName>Edinson</ForeName>
<Initials>E</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0003-0587-2177</Identifier>
<AffiliationInfo>
<Affiliation>Dept. of Microbiology, Max Planck-Institute for Marine Microbiology, Celsiusstr. 1, 28359, Bremen, Germany. epuentes@mpi-bremen.de.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Harder</LastName>
<ForeName>Jens</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Dept. of Microbiology, Max Planck-Institute for Marine Microbiology, Celsiusstr. 1, 28359, Bremen, Germany.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>10</Month>
<Day>17</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Biodegradation</MedlineTA>
<NlmUniqueID>9100834</NlmUniqueID>
<ISSNLinking>0923-9820</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001426">Bacterial Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D026901">Membrane Transport Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D039821">Monoterpenes</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001426" MajorTopicYN="N">Bacterial Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001673" MajorTopicYN="N">Biodegradation, Environmental</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003198" MajorTopicYN="N">Computer Simulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016013" MajorTopicYN="N">Likelihood Functions</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D026901" MajorTopicYN="N">Membrane Transport Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D039821" MajorTopicYN="N">Monoterpenes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005810" MajorTopicYN="N">Multigene Family</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020560" MajorTopicYN="N">Proteobacteria</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Anaerobic metabolism</Keyword>
<Keyword MajorTopicYN="Y">Castellaniella defragrans</Keyword>
<Keyword MajorTopicYN="Y">Monoterpene</Keyword>
<Keyword MajorTopicYN="Y">RND efflux pump</Keyword>
<Keyword MajorTopicYN="Y">Toxicity</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>05</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>09</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>10</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>4</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>10</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30334144</ArticleId>
<ArticleId IdType="doi">10.1007/s10532-018-9857-6</ArticleId>
<ArticleId IdType="pii">10.1007/s10532-018-9857-6</ArticleId>
<ArticleId IdType="pmc">PMC6394551</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Chromatogr A. 1999 Dec 24;864(2):221-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10669289</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Microbiol Biotechnol. 1999 Aug;1(1):107-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10941792</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Microbiol. 2000 Oct;174(4):233-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11081791</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2001 Jan 19;305(3):567-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11152613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 2001 Aug 7;202(1):139-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11506922</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 2002;56:743-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12142492</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2002 Aug;7(8):366-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12167332</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2004 Nov 22;20(17):3258-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15201184</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Struct Biol. 2004 Dec;14(6):741-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15582398</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Sep 9;280(36):31489-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16006553</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2007 Nov;189(21):7600-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17720796</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteins. 2008 Apr;71(1):24-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18076035</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2008 Mar;74(6):1932-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18192403</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Appl Microbiol. 2008 Dec;105(6):1991-2001</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19120646</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 2009 Nov;155(Pt 11):3509-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19713238</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Eng. 2009 Oct 16;3:18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19835592</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2009 Oct 27;10:356</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19860910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2010 Jul 1;26(13):1608-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20472543</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2010 Sep;54(9):3770-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20606071</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Syst Biol. 2011 May 10;7:487</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21556065</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Enzymol Relat Areas Mol Biol. 2011;77:1-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21692366</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(6):e21196</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21698261</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Nov 8;108(45):E1045-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21873238</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Biotechnol. 2012 Jun;23(3):415-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22155018</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1990 Oct 5;215(3):403-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2231712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 2012 Oct;109(10):2513-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22539043</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Microbiol. 2012 Sep 04;12:192</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22947208</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virulence. 2013 Apr 1;4(3):223-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23380871</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Antimicrob Chemother. 2013 Jul;68(7):1594-600</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23467176</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2013 May 21;6(1):81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23693002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol Rep. 2010 Jun;2(3):389-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23766111</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2014 Jan;42(Database issue):D206-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24293654</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biophys. 2014;43:93-117</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24702006</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Microbiol. 2014 Jun 21;14:164</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24952578</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2015 Apr;59(4):2388-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25645845</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2015 Jun;10(6):845-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25950237</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2016 Jan 4;44(D1):D372-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26546518</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2016 Feb 12;7:10731</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26867482</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2016 Jul;33(7):1870-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27004904</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2016 Jul 05;7(4):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27381291</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microorganisms. 2016 Feb 16;4(1):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27681908</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biophysics (Nagoya-shi). 2011 Nov 30;7:129-133</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27857601</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2017 Jan 4;45(D1):D190-D199</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27899635</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2017 Jan 4;45(D1):D200-D203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27899674</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2017 Mar 29;6:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28355133</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2017;1611:59-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28451972</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2017 Jun 20;114(25):6557-6562</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28584102</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brief Bioinform. 2017 Sep 6;:null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28968734</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Rev. 1995 Jun;59(2):201-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7603409</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Rev. 1996 Dec;60(4):575-608</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8987357</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1998 Jan 2;273(1):85-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9417051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Syst Appl Microbiol. 1998 Jun;21(2):237-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9704110</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Int Conf Intell Syst Mol Biol. 1998;6:175-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9783223</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Syst Appl Microbiol. 1998 Aug;21(3):365-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9841126</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Allemagne</li>
</country>
<region>
<li>Brême (Land)</li>
</region>
<settlement>
<li>Brême</li>
</settlement>
</list>
<tree>
<country name="Allemagne">
<region name="Brême (Land)">
<name sortKey="Puentes Cala, Edinson" sort="Puentes Cala, Edinson" uniqKey="Puentes Cala E" first="Edinson" last="Puentes-Cala">Edinson Puentes-Cala</name>
</region>
<name sortKey="Harder, Jens" sort="Harder, Jens" uniqKey="Harder J" first="Jens" last="Harder">Jens Harder</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/DetoxFungiV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000635 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000635 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    DetoxFungiV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:30334144
   |texte=   An RND transporter in the monoterpene metabolism of Castellaniella defragrans.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:30334144" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a DetoxFungiV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 16:09:04 2020. Site generation: Fri Nov 20 16:15:24 2020